Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition
نویسندگان
چکیده
A global ocean biogeochemical model is used to quantify the sensitivity of marine biogeochemistry and air–sea CO2 exchange to variations in dust deposition over decadal timescales. Estimates of dust deposition generated under four climate states provide a large range in total deposition with spatially realistic patterns; transient ocean model experiments are conducted by applying a step-function change in deposition from a current climate control. Relative to current conditions, higher dust deposition increases diatom and export production, nitrogen fixation and oceanic net CO2 uptake from the atmosphere, while reduced dust deposition has the opposite effects. Over timescales less than a decade, dust modulation of marine productivity and export is dominated by direct effects in high-nutrient, low-chlorophyll regions, where iron is the primary limiting nutrient. On longer timescales, an indirect nitrogen fixation pathway has increased importance, significantly amplifying the ocean biogeochemical response. Because dust iron input decouples carbon cycling from subsurface macronutrient supply, the ratio of the change in net ocean CO2 uptake to change in export flux is large, 0.45–0.6. Decreasing dust deposition and reduced oceanic CO2 uptake over the next century could provide a positive feedback to global warming, distinct from feedbacks associated with changes in stratification and circulation.
منابع مشابه
Sedimentary and mineral dust sources of dissolved iron to the world ocean
Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulat...
متن کاملLimited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model
The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradual...
متن کاملBiogeochemical signatures of nitrogen fixation in the eastern North Atlantic
[1] Stable nitrogen isotopic determination of particulate organic matter over the eastern North Atlantic in spring 2000 reveal a region of low natural abundance of N relative to N between 26 N and 32 N along 20 W. This light isotopic signal, together with phytopigment data and persistently elevated nitrate to phosphate ratios in the upper thermocline, suggest that nitrogen fixation provides a l...
متن کاملUpper ocean ecosystem dynamics and iron cycling in a global three-dimensional model
[1] A global three-dimensional marine ecosystem model with several key phytoplankton functional groups, multiple limiting nutrients, explicit iron cycling, and a mineral ballast/ organic matter parameterization is run within a global ocean circulation model. The coupled biogeochemistry/ecosystem/circulation (BEC) model reproduces known basin-scale patterns of primary and export production, biog...
متن کاملImpacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry
[1] We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in...
متن کامل